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Abstract 

There are two well-known methods for constructing the ‘connecting homomorphism’ in 
homological algebra. Either one constructs it as a binary relation which is shown to be uni- 

versally defined and single-valued, or one makes use of the so-called two-square lemma, which 
provides an isomorphism between two invariants associated with adjacent commutative squares. 

Both constructions generalize to arbitrary ‘Goursat categories’, namely operational categories 
satisfying the condition that the relative product of any relation with its converse is transitive. 
By an ‘operational category’ we here mean a category V accompanied by a category of set- 
valued functors from V. In order to state the results, one has to define ‘relations’ in operational 
categories and one has to generalize the notion of ‘exactness’ from short sequences to forks and 
the notion of ‘commutativity’ to squares in which two arrows are doubled. The proof of the gen- 
eral two square lemma involves a construction which closely resembles that of PER in theoretical 
computer science and contains the latter as a special case. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: 18BlO 

1. The connecting homomorphism 

Ever since functions were declared to be universally defined and single valued, 
other binary relations have been pushed into the background of mathematics. A notable 
exception is the construction of the so-called connecting homomorphism in homological 

algebra. Consider the solid part of the diagram in Fig. 1 in a concrete Abelian category, 
say in Mod R. 
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1 
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Fig. 1 

Theorem 1.1. Assume that all (solid) rows and columns of Fig. 1 are exact and that 
all squares commute. Then there exists an arrow cp : B -+ I such that A -+ B + I -+ J 

is exact. 

Proof. Complete the diagram with the help of the dotted arrows. Let k” denote the 

converse of k. Then the zig-zag homomorphic relation 

$ = k’ji”hg’f ev 

is an isomorphism P z Q. Put cp = k+e. 0 

With the help of the Freyd-Mitchell embedding theorem one may extend this result 

to other Abelian categories. How does it generalize to non-Abelian categories? In order 

not to lose sight of applications, we shall phrase our result in terms of ‘operational 

categories’. 

Theorem 1.2. In any operational category, assume that all (solid) rows and columns 
of Fig. 2 are exact, that all squares quasi-commute, that f and i are injections and 

that g and j are surjections. Assume further that the solid diagram can be completed 
by the dotted arrows to render the top and bottom rows exact. Then there exists an 

arrow cp : B -+ I such that A ZB ---f I= J is exact, In a Goursat category, we may 

take cp to be the homomorphic relation 

cp = kkUjiVhgV f eve. 

Before proving this, in Sections 7 and 9, we must define the words in italics: 

operational category, exact, quasi-commute, injection, surjection, Goursat category 
and homomorphic relation. There remains the question when the diagram can be com- 

pleted as assumed. A sufficient condition will be given in Section 5. 
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A =i B .:.+ P 

11 (1) lr 
C=tD9‘E 

ll_lf$; 

1Li (4) 11 

Q k . . . + 1-J 

Fig. 2. 

2. Operational categories 

An operational category WY consists of a category %, an auxiliary category Y, the 
category of sorts, and a bifunctor 

[-, -1 : 3 x Gf? -+ Set. 

In the special case when 23 is a category of fimctors %? + Set, this bifunctor may be 
taken to be application and we may write 

[G, C] = G(C). 

For our purposes, we may as well make the blanket assumption that we are dealing 
with this special case. 

However, in many examples, ‘3 is a subcategory of %3’, %7 being locally small, and 
[-, -1 is then the usual Horn-functor restricted to 9 x ‘$7. In order to subsume these 
examples under our blanket assumption, we shall identify each object C of %P with 
its image 

Hom(C, -) : V -+ Set 

under the Yoneda embedding. 
Given objects A and B of %‘, a potential morphism cp : A -+ B is a natural transfor- 

mation 

cp : [-A + L-31. 

It is called a morphism if it is representable by an arrow f : A -_) B in %?, i.e. if 
cp = [-, f]. To assure the uniqueness of f, it will be useful to stipulate the following. 

Postulate I. 9 generates V, i.e. if f,g : AZB and [G,f] = [G, g] for all G in ‘3, then 

f = 9. 
In case $9 G W’P, this is the usual meaning of ‘generates’. If f represents cp, we will 

just write cp = f, so that 

fG = [Gfl = G(f). 
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Given any set 1, by an I-ary operation we shall understand a natural transformation 

iEl 

where the Gi and G are sorts, i.e. objects of 9, but the product 

is taken in the functor category SetV. 

We shall call the potential morphism cp : A t B a homomorphism if it preserves all 

operations, i.e. if the following square commutes for each operation o : P -+ G: 

P(A) w(A’ - G(A) 

P(B) o(B) 
- G(B) 

Here (pp is the unique mapping making the following squares commute for all 

i E I: 

t t 

p(i) a,(B) 
w ‘i(B) 

where the xi : P -+ Gi are the canonical projections. Note that 

f’(A) = J-J Gi(A) 
iEI 

in Set with canonical projections rti(A), in view of the definition of products in functor 

categories. If P happens to be in Y, the meaning of qp is what one would expect. 

Of course, every morphism is a homomorphism, with cpc = G(f) and (pp = P(f). 
It will be useful to stipulate conversely: 

Postulate II. Every homomorphism is a morphism. 

Then, in view of Postulate I, every homomorphism cp : A -+ B is represented by 

a unique arrow f : A -+ B in % and we write cp = f. Postulate II is satisfied, e.g., if 

6 C V’P and V’ is adequate in the sense of Isbell [12]. 
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3. Homomorphic relations 

Given an operational category %g, with 9 C Set’, by a potential relation p : A j+ 

B between objects A and B of V we shall understand a natural family of ordinary 
relations 

{PC : G(A) % GW)GES 

meaning that, for any natural transformation z : G -+ G’ and any a E G(A) and b E 

G(B), 

b&a + r(B)(b)p@(A)(a). 

A potential relation will be called a homomorphic relation if it preserves all opera- 
tions 

i.e. if, for all a E P(A) and b E P(B), 

vi;.EfhPG,ai * w(B)(bbw$A)(a). 

Here ai E Gi(A) is the image of a E P(A) under the projection P(A) -+ Gi(A), i.e. 

ai = ni(A)(a). 

Special homomorphic relations are the following: 
(1) homomorphisms cp = [, f], when f : A --) B in $7 and 

@ca w b = _fG(a) 

for all a E [G, A], b E [G, B], G in 9 (we usually just write cp = f ); 
(2) the converse p” : B f, A of a homomorphic relation p : A f+ B, where & = 

(PG)v, i.e. 

apgb H bpca; 

(3) the relative product op : A j+ C of two homomorphic relations p : A f, B and 
e : B ft C, where (op)o = Co/Q is the usual relative product, i.e. 

c(w)Ga H 36~ [G,B](CoGb A bP@); 

(4) any intersection of homomorphic relations A f+ B. 

By (l)-(3) all zig-zag relations are homomorphic: 

p = f g”hk” . . 

We shall say that a homomorphic relation p is representable if p = fg”. In case 
92 2 VP, all zig-zag relations will be representable under the very mild assumption 
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that %? has weak pullbacks. In fact, to say that B z D LA is a weak pullback of 

B-%CLA means that, for all a: G-+A and b: G-B, 

gb = ha ti 3d:o_b(b=pd Aqd=a). 

If G is in 9, this may be written 

(g”h)o = (pq”)c. 

This is so for all G in 9 if and only if g”h = pq”, 
The crux of this argument may be summarized as follows. 

Proposition 3.1. If 22 C_ 5~9’ then B &D&A is a weak pullback of BzCh’A 

tf and only tf g’h = pq”. 

If p, a : A fi B, we write p 5 a to mean that bpoa + baoa for all a E [G,A], b E 
[G, B] and G in 9. We say that a potential relation p : A f+ B is 

single valued if pp’ 5 le, 

universally defined if IA 5 pup, 

injective if pup 5 IA, 
surjective if 1~ < pp”. 

A homomorphic relation which is single valued and universally defined is of course 

a homomorphism. In particular, for any arrow f : A + B, we have 

ff” 5 IL?, 1,4 5 f”f, 

from which it follows that ff”f = f, f”ff” = f”. 

4. Injections and surjections 

An injection is an injective homomorphism, a surjection is a surjective homomor- 

phism. The following criterion is useful. 

Proposition 4.1. The representable homomorphic relation fg” is a homomorphism tf 
and only tfg”g 5 f "f and g is a surjection. The corepresentable homomorphic relation 
qvp is a homomorphism only tf qq’ > ppv; the converse holds tf q is an injection. 

Proof. We shall prove the first statement, leaving the second to the reader. Let p = 
f g’, where f : C + B and g : C ---f A, say. Then p is single valued if and only if fg”gf” 5 
lg, i.e. g”g 5 f”f. Moreover, p is universally defined if and only if 1~ 5 gf”fg”, 
i.e. 

va E [G,A]%,d E [G,Cl@ = gG(c) A fG(c) = fG(c') A gG(C') = a), 
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i.e. 

vo E [G,B]% E [G,Cla = g’dc), 

i.e. 

1A I gg”. q 

Corollary 4.2. If g is a subjection, then g”g 5 f” f if and only if $:A-,Bhg = f. 
Zf q is an injection then qq* 2 pp’ if and only if 3hqh = p. 

Proof. Again, we only prove the first statement. If hg = f, then surely f"f = g”h”hg 2 

g”g, since h”h 2 1~. Conversely, if g”g 5 f”f, then fg" is a homomorphism by 

Proposition 4.1, so put fg" = h, in view of (II). But then hg = f g"g 2 f, since 

g”g > lc, therefore hg = f. 0 

Proposition 4.3. Every injection is a monomorphism. The converse is true $9 2 VP. 

Proof. Suppose m : A --t B is injective, i.e. mum 5 lA. Assume that mf = mg, where 

f, g : C =A. Then m f 5 mg, hence f < m’mg 6 g and therefore f = g. Thus m is a 

monomorphism. 

For m to be injective means that, for all G in 9 and a,a’ E [G,A], fo(a) = fo(a’) 
implies a = a’. This is surely so when f is a monomorphism and G is in %:, for then 

fG(a)=fa. 0 

We recall that an epimorphism is said to be regular if it is the coequalizer of some 

pair of parallel arrows. An object P of Y preserves regular epis if, for any regular 

epimorphism e : A --) B, every arrow f E [P, B] can be ‘lifted’ to an arrow g E [P,A] 
so that [P, e](g) = f. If P is in %, it is then called projective. 

Proposition 4.4. Every surjection is an epimorphism; in case 23 s VP, if it has a 

weak kernel pair it is even a regular epimorphism, namely the coequalizer of that 
pair. Every regular epimorphism is surjective if and only if every object G of 9 

preserves regular epis. 

Proof. Let e : B -+ C be a surjection and assume that f e = ge, where f,g : CZD. 
Then f e 5 ge, hence f 5 fee” 5 gee0 5 g and therefore f = g. Thus e is an 

epimorphism. 

Suppose $9 C VP and e has a weak kernel pair f, g : A 2 B. Then (f, g) is a weak 

pullback of (e,e), hence f g” = e”e, as follows from the Proposition 3.1. Now suppose 

hf = hg. Then eve = f g” < huh. Therefore, by Corollary 4.2, there exists k : C -+ D 
such that ke = h. This k is unique, since e is an epimorphism. Thus, e is the coequalizer 

of (f, 9). 
The last statement of Proposition 4.4 is just a rewording of what it means for G to 

preserve regular epis. 0 
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5. Exactness 

A potential relation 8 olt A (meaning 0 : A f, A) is said to be 

rejexive if 1A 5 6, 
symmetric if eu 5 0, 
transitive if 88 _< 0; 

it is a potential equivalence relation if it has all three properties. Among homomorphic 
equivalence relations on A are those of the form huh, where h : A + B, they are called 

congruences. 
The potential relation 0 is said to be corejexive if 8 5 1~. We do not need the 

concept ‘cosymmetric’, since 0 is symmetric if and only if 0” = 6. Nor do we need to 
define ‘cotransitive’ for a potential relation which is symmetric, for it is transitive if 
and only if 80 = 0. Thus, a coequivalence may be defined as a transitive and symmetric 
potential relation which is coreflexive. Among coequivalences on A are those of the 
form hh”, where h : C+A for some object C, they will be called cocongruences. 

Proposition 5.1. A representable relation is a cocongruence tf and only tf it is co- 
rejexive. A corepresentable relation is a congruence tf and only tf it is reflexive. 

Proof. To prove the first statement, for example, suppose fg” 5 1~. Then f 5 g, 
hence f = g. 0 

We note that in a ‘Barr exact’ category all representable equivalence relations are 
congruences by definition. 

LB h We shall say that the left fork A+ - C is exact if h”h is the intersection of 
4 

all congruences on B containing fg”. This is equivalent to saying 

vk :s+n(fg’ < k*k u h”h 5 k”k) 

for all objects D of %‘. Now 

fg” 5 k”k ti kf 5 kg H kf = kg, 

So we may infer the following from Corollary 4.2. 

Proposition 5.2. If h is a surjection, the left fork is exact tf and only tf h is the 
coequalizer of (f, g) 

We shall write 

Ker h = huh, 

Im( f, g) = intersection of all congruences on B containing fg”. 
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Exactness of the left fork may thus be expressed by saying that Im(f, g) equals Ker h. 

In view of Proposition 5.2, Im(f,g) will be a congruence if (f,g) has a surjective 

coequalizer. 

We shall say that the right fork C A B L +A is exact if hh” is the join of all 
9 

cocongruences on B contained in g”f. This is equivalent to saying 

‘dk : D+B(g’f 2 kk’ - hh” 2 kk”) 

for all objects D of %?. Again, we may rewrite g” f 2 kk” as fk = gk, so we may 

infer from Corollary 4.2. 

Proposition 5.3. If h is an injection, the right fork is exact tf and only tf h is the 

equalizer of (f, g). 

We shall write 

Imh = hh”, 

Ker(f, g) = join of all cocongruences on B contained in g”f. 

Exactness of the right fork may thus be expressed by saying that Ker( f, g) equals Im h. 

In view of Proposition 5.3, Ker(f,g) is a cocongruence if (f, g) has an equalizer. 

Proposition 5.4. If Q? has a terminal object 1, then e : A -+ B is surjective tf and only 
ifA-+B Z 1 is exact. If G4: has an initial object 0, then m : A + B is an injection if 

and only if 0 2 A + B is exact. 

Proof. We shall prove the first statement, leaving the second to the reader. Let g : B -+ 
1 be the unique arrow. Then exactness means that, for all k : C 4 B, 

dq > kk’ # ee’ 4 kk”. 

Now o& > 1~ > kk”, so exactness just asserts that ee’ is the largest cocongruence 

relation on B, that is, that ee” = lg. Cl 

We are now in a position to answer the question: when can the diagram of Theorem 

1.2 be completed by the dotted arrows? 

Proposition 5.5. For the diagram of Theorem 1.2 to be completable by the dotted 
arrows so that top and bottom forks are exact, it sufJices that V has equalizers and 
coequalizers and that 9’P C W consists entirely of projectives. 

Proof. The coequalizer e : B --+ P of A 2 B is a surjection, by Proposition 4.4, and 

renders the top fork exact, by Proposition 5.2. The equalizer k : G --$ I of I 2 J is an 

injection, by Proposition 4.3, and renders the bottom fork exact, by Proposition 5.3. 

Cl 
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6. Maltsev and Goursat categories 

We note that in any operational category cocongruence relations permute: 

ff “&f = ss"ff “. 

(For reasons of symmetry, = may be replaced by 5.) 
Indeed, b(ff ‘gg”)Gb’ means that 

b = fG(a), fG(a> = b”, b” = gG(a’), gG(d) = 6’ 

for some a,a’ E [G,A] and b” E [G,B], that is, 

b = fG(a) = gG(a’) = b’, 

for some a, a’ E [G,A], where now the roles of f and g are interchangeable. 
We shall say that an operational category is a Maltsevl category if congruence 

relations permute: 

f”fg”g = g”gf”f. 

For reasons of symmetry, we may replace = by 5, the result being equivalent to 

gf”fg”gf” 5 gf”, 

that is, to 

(*I PPUP =P 

for any representable homomorphic relation p, since always pp’p 2 p. If we require 
(*) for all zig-zag relations or even for all homomorphic relations, we shall speak of 
a Maltsevz or a Maltseq category, respectively. 

An operational category is a Goursatl category if congruences 3-permute: 

f “f g”gf”f = g”gf “f g”g. 

Arguing as above, we see that this is equivalent to 

(**I PP”PPU = PP” 

for any representable p. Requiring (**) for all zig-zag relations or all homomorphic 
relations, we obtain Goursat2 or Gomat categories, respectively. 
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7. Quasi-commutativity 

In operational categories we are dealing with two kinds of partially doubled squares, 
as follows: 

A -B 
9 

B-C 

II 
D-E E ‘F 

9 

In a Goursatz category, we shall say that the first of these quasi-commutes if 

ff”s ImU ZD>s”ff” = ss”f WA ZB)f”gg”, 

and that the second square quasi-commutes if 

f”fg” Ker(CZF)gf”f = g”gf” Ker(EZF)fg”g. 

While these definitions lack motivation for the moment, we may point out already that, 
in a module category, quasi-commutativity is implied by the usual commutativity of 
squares, provided all double arrows are replaced by their differences, (see Section 10 
below). 

The following two kite lemmas will prove useful in diagram chasing: 

Lemma 7.1. Consider the kite-shaped diagram in a Goursatz category: 

e 
A ,B-P 

II I 
f 

D ’ ,E 

I 
h 

G 

Assume that the square quasi-commutes and that the top row and left column are 
exact. Then 

hg”f e”efVgh” = hg”ff “gh”. 

Proof. Since the top row is exact and since gg”g = g, the left-hand side of the equation 
may be written 

hgUgg” f Im(A 2 B) f ‘gg”gh”. 

Since the square quasi-commutes, this is same as 

hg”ff “g Im(AZD)g”ff “gh”. 
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Since the left column is exact, this may be written 

hg”ff “gh”hg”f f ‘gh”. 

Finally, applying the Goursat condition to p = hg”f, we obtain 

hg”ff “gh”. q 

Lemma 7.2. Consider the kite-shaped diagram in a Gout-sat2 category: 

B 

I 
f 

9 
D -E 

I 
h 

F’G 
II 

-H 

Assume that the square quasi-commutes and that the right column and bottom row 

are exact. Then 

i”hg”ff “gh”i = i”hg”gh’i. 

Proof. We rewrite the left-hand side of the equation successively as 

i”hh”hg” Ker(EZH)gh’hh’i 

= i”hg”gh” Ker( G 2 H)hg”gh’i 

= iVhgvghUiiVhgVghUi 

= i”hg”gh”i 

using the facts that the right column is exact, that the square quasi-commutes, that the 

bottom row is exact and that p = i’hg” satisfies the Goursat condition. 0 

We now return to Fig. 2 of Theorem 1.2 and look at the homomorphic relation 

cp = kk”ji”hg” f e”e. 

Then 

(p(p’ = kk’ji’hg’f e”ef “gh”z’jVkk”. 

Now successively delete e’e, ff “, g”g and hh” by the kite Lemmas 7.1 and 7.2. Since 

Pi = 1 and jj’ = 1, this leaves 

(i) ~~” = kk”kk” = kk” 5 1. 

We similarly treat 

(pv~ = e’ef “ghVijUkkVji”hg” f e”e, 
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successively deleting kk”,juj,? and h”h. Since gg” = 1 and f "f = 1, this leaves 

(ii) (pUq = eVeeVe = eve > 1. - 

By (i) and (ii), cp is a homomorphism, hence an arrow B -+ Z in our category. 

Moreover, 

Kercp = (p”q = e”e = Ker e = Im(A ZB), 

Im cp = (p(p” = kk” = Im k = Ker(Z ZJ), 

and so 

A=B--,Z=J 

is exact. This proves the last statement of Theorem 1.2 for Goursat2 categories. 

We note that the injectivity of f and the surjectivity of j are not really needed for 

showing that cp is a morphism. They are used in calculating the kernel and image of cp. 

8. Partial equivalence relations 

In this and in the next section, the word ‘relation’ will stand either for ‘potential 

relation’ or for ‘homomorphic relation’. The results appearing in these two sections 

will hold in either case. 

A partial equivalence relation or per on the object A of 55’ is a relation a : A f, A 
which is transitive and symmetric, but not, in general, reflexive: 

c(cI I a, au I a; 

equivalently, 

CIa = CC, au = a. 

We wish to view these pers as objects of a new category %?$, a kind of completion 

of g, 

Given pers a on A and fl on B, an arrow ppcc : a -+ b will be induced by a zig-zag 

relation p : A f, B satisfying 

(*) a I P’BP, pap’ I P. 

If also ficra : a + /I, we define equality thus: 

(**) flpa = pa, ++ a 5 p”/?a * pa8 5 /I. 

Note that the two inequalities on the right are equivalent, in view of (*). Indeed, 

assume a 5 p’po. Then 

a = aaa I p”BpapvPp I p’PBBp = pvBp. 

The converse implication is proved similarly. 
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Composition of arrows is defined thus: 

but a small argument is required to show that this is well-defined. Supposing ,spll = pp; 
and ,,OB = ?CJ~ we must verify that Jap), = y(~‘p’)a. Indeed, 

(ap)a(o’p’)” = 0pclp’“fJ’” 5 (T/lfJ’” 5 y, 

and the result follows from (**). 
Finally, the identity arrow 1, : 01 -+ a is defined by 

la=&)a. 

Thus, for example, 

(flPcc)l, = jdPL4h = pPa. 

There is an obvious embedding V + %$ sending A onto 1~ and f : A -+ B onto 
(is) fcl,,. To see that this is full and faithful, suppose the zig-zag relation p : A f, B of 
929 induces an arrow 1~ + 1~ in 55’:. Then, by (*), 

1.4 I P”bP, PL4P” 5 1s. 

But this means that p is a homomorphism, hence p = f for a unique f : A + B in g. 
For what it is worth, %$ may be identified with a (non-full) subcategory of Set”. 

(For the latter to be locally small, we would have to require that B be small.) With 
each per a on A we associate a functor F, : 3 -+ Set defined on objects by 

F,(G) = Dom(ao)/mo. 

Moreover, on arrows r : G + G’, we define 

F,(~)([almod EG) = W >(s)lmod UG’ 

for any a E [G,A]. Evidently, Fa is a quotient functor of a subfunctor of the repre- 
sentable functor [ ;, A]. 

Moreover, with each arrow ppa of %ZZ we associate the natural transformation tg : 

F, -+ Fg defined by 

t,(GWlmod MG) = Vlmod PC 

whenever bpGa. This is well-defined in view of (*). We also note that, in view of 
(**), ppa = bocc if and only if tp = to, since both equations translate into pap” 5 /?. 

9. The two-square lemma 

In a Goursatz category $%g, we have 

PP”PPD = PPD 
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for any zig-zag relation p : A f, B. This shows that a = p”p and /I = pp” are pers and 

that ,TP~ : 0: -+ j? is an isomorphism in %?&#, for 

PEP” = B, p”Pp = a. 

Consider now the following diagram, in which both forks are exact: 

A-* 
f 

B-C 

(1) g (2) 

and 
%$. 

say, 

say, 

t 
DA-E =F 

let ps = Wgfvf : B + E. Then ps induces an isomorphism pGps -+ p& in 

But 

pips = f”fg”hh”gf”f = f”fg” Ker(E zE)gf”f = Ker(2), 

where (2) is the open square on the right, and 

pspf; = hh”gfVfg”hh” = hh”g Im(Az B)g”hh” = Im( 1 ), 

where (1) is the open square on the left. 
Now close the two squares as follows: 

A ;B -C 

(1) (2) 

VI 1 11 

D-E- F 

Then (1) quasi-commutes if and only if Im( 1) is symmetric about the main diagonal 
of the left square, and (2) quasi-commutes if and only if Ker(2) is symmetric about 
the main diagonal of the right square. This observation should lend support to the 
definition of quasi-commutativity proposed in Section 7. 

We shall now take another look at Fig. 2 of Theorem 1.2. The homomorphic relations 

PY = ff”gh”k ph = ii”hg’g, pi = hh”ij”j 

induce the following isomorphisms, respectively: 

Ker(2) 1 Im( l), Ker(2) z Im(3), Ker(4) 1 Im(3). 

Moreover, 

pf = gg”fe”e = fe’e, pj = kk”ji”i = ,l&*j 
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induce the isomorphisms 

e”e G Im( 1 ), Ker(4) s kk”. 

Therefore, 

# = &p;phpt;pf 

induces the isomorphism 

Im(A ZB) = e’e 1 kk” = Ker(lZ!J), 

hence an arrow 1~ -+ 1~ in %? and therefore a morphism A -+ B in ‘X, giving an 

alternative proof of Theorem 1.2 for Goursat2 categories. 

What is the relation between 40~ and cp? In any operational category we may permute 

hh” with ii”, as we saw in Section 6. In a Maltsevr category we may also permute h”h 

with g”g, so 

cp’ = kkUjivhhviiuhgvghvhgUf eve 

= kk”ji’hg’f eve = rp. 

It is possible that, in Goursat categories which are not Maltsev, rp# # cp in general. 

To sum up, the two-square lemma yields an alternative construction of the connect- 

ing homomorphism for Goursat categories, which coincides with our old construction 

in Maltsev categories. In fact, this new construction works for arbitrary operational 

categories: all we have to do is to redefine Im(1) and Ker(2) as the transitive clo- 

sures of psp: and pipg, respectively. This would allow us to generalize the notion of 

quasi-commutativity accordingly. 

We note that the transitive closure of a symmetric relation is the intersection of all 

pers containing it. The set of relations, potential or homomorphic, between two given 

objects is closed under intersection. 

Instead of restricting the arrows between pers to be induced by zig-zag relations, we 

might have admitted arbitrary homomorphic relations. This would not affect the results 

of Sections 8 and 9. Our choice was dictated by comparison with the established 

category PER of Section 13. 

10. Abelian categories 

What happens to our definitions and results when we restrict attention to Abelian 

categories? To simplify the discussion, we shall assume here that %? = ModR is the 

category of right R-modules, R being an associative ring with unity, and 9 = {G}, 

where G = RR, is the ring R viewed as a right R-module. In principle, our arguments 

should remain valid for any Abelian category with ‘enough’ projectives. 

To facilitate the comparison, we shall denote the usual image and kernel off : A -+ B 

by 

im f = {b E B ( ZlaEAb = fa}, kerf={aEA)fu=O}, 
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where bEB may stand for b : G + B. It is easily seen that 

b(Imf)ob’ H b = b’E imf, 

a(Ker f)oa’ w a - u’ E ker f, 

b Im( f, g)cb’ w b - b’ E im(f - g), 

a Ker( f, g)cu’ H a = a’ E ker( f - g). 

It follows that 

Im( f, g) = Ker h H im( f - g) = ker h, 

Im h = Ker( f, g) H im h = ker( f - g). 

Therefore, 

are exact if and only if 

Af-sBAC, Ch.Bf-gA 

are exact in the usual sense, respectively. 

Proposition 10.1. In ModR, quasi-commututivity of the squares 

C -D 
9 h, 

is implied by the usual commututivity: 

f(fi - f2) = g(g1 - gd, @l - W = WI - h)k 

respectively. 

Proof. Assume the first equation and consider the statement 

(i) dl(ff”gIm(A=c)g’ff”)cd2 

for di ED. This asserts that there exist bi E B and ci E C such that 

4 = fbi A fh = gel A cl - c2 E im(gi - 92) A gc2 = fb2 A fb2 = d2. 
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This implies that, for some SEA, 

4 -d2 = 01 - fb2 = gel -gcz = g(g1 - g2)a = f(fi -ji)a. 

Take 

b’ = (_I”1 - .C2)a - (bl - bz), 

then fb’ = 0 and therefore 

dl = gel A gel = f(bl + b’) A (bl + b’) - b2 E im(ft - f2) A fb2 = gc2 

Agc2 = d2, 

Therefore, 

(ii) dl(gg”fIm(A=B)fUgg”)cdz, 

and so (i) implies (ii). The converse implication holds similarly, hence the first square 

quasi-commutes. 

Next assume the second equation and consider the statement 

(iii) el(h”hk”Ker(F=H)khUh)Ge2 

for ei E E. This asserts that there exist ei E E such that 

he1 = hei A ke; = kei E ker(kl - k2) A hei = he,. 

This implies that 

ei,ei E ker((kl - k)k) = ker((ht - hz)h), 

hence that 

he = hei A he2 = hei E ker(hl - h2). 

Take e = el + e; - ei and e’ = e2, then 

ket = ke A he = he’ E ker(hr - h2) A ke’ = ke2, 

so that 

(iv) el(k”kh” Ker(GzH)hk”k)Gez. 

Therefore (iii) implies (iv). The converse implication holds similarly, hence the second 

square quasi-commutes. 

It follows that our construction of the connecting homomorphism implies the usual 

one in a module category. 0 

11. Algebraic categories 

A single-sorted algebraic category 9? such as ModR may be described classically as 

having as objects sets with finitary operations satisfying certain equations and as arrows 
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mappings which preserve these operations. (In case of ModR, the elements of R are 

to be counted among the operations.) 

If we denote by G the forgetful fnnctor from %? to Set, nary operations may be 

viewed as natural transformations G” -+ G. Now G is represented by the free algebra in 

one generator, according to our convention also denoted by G, and the n-ary operation 

then becomes G -+ nG in 55’. 

A single-sorted algebraic category is operational in our sense, with Y = {G}, where 

G is projective, hence regular epis are the same as surjections. In such a category, 

there is a one-to-one correspondence between homomorphic relations p : A j+ B and 

subalgebras R 2 B x A. It follows that every homomorphic relation is representable: p = 

gf”, where f =pm and g=qm, m : R +B x A being the inclusion and p : B x A 4 A 

and q : B x A -+ B the canonical projections. 

These single-sorted finitary algebraic categories may be generalized in two directions. 

By removing the restriction that all operations be finitary, we get Linton’s equational 

and varietal categories, e.g. the category of compact HausdorfI spaces. (In varietal cate- 

gories G is representable, hence may be taken in V O*, not so in equational categories.) 

By removing the restriction that there is only a single sort, we obtain the multi-sorted 

algebraic categories of Higgins, e.g. the category Mod with two sorts: one for rings 

and one for Abelian groups. 

All these generalized algebraic categories are operational and so are full subcategories 

of such; to mention only one example: the category of normed vector spaces with norm 

decreasing linear mappings as morphisms. 

12. Operational categories simplified 

Let 9 be a full subcategory of Set’ and assume that 9 is closed under products. 

Then an operation o : P -+ G, with P = Hi,, Gi, is simply an arrow in 9. What does 

it mean for a potential morphism cp : A -+ B to preserve the operation co? In Section 2 

we expressed this by the commutativity of a square, to wit, by the equation 

where however (pp was defined by the universal property of the product P. Now, as 

P is in $9, (pp may be identified with the value of the natural transformation cp at P, 
as anticipated by the notation. But then the square commutes merely by virtue of cp 

being a natural transformation. We thus have: 

Proposition 12.1. If ‘3 is a full subcategory of Set Q closed under products, then any 

potential morphism cp : A -+ B is a homomorphism. 

Postulates I and II now assert that every potential morphism is a morphism, uniquely 

represented by an arrow f : A -+ B of ‘8. In case Y c VP, 3 is then what Isbell calls 

adequate and %? may be viewed as a full subcategory of Set’. Moreover, every object 
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C of %’ may be viewed as a product preserving fimctor Y + Set, as in an algebraic 

category a la Lawvere. 

Let us now return to the situation of Section 2, where 63 is no longer assumed to 

be closed under products, and let 9 be its product closure in Set’. 

Proposition 12.2. Let 9 be a subcategory of Set ‘, 9 its full product closure. Then 
every homomorphism cp : A -+ B in %‘g extends to a unique homomorphism Ic/ : A --) B 

in WY and, conversely, every such $ restricts to a unique cp. 

Proof. Let F = &, Gi with canonical projections zi : F -+ Gi. Define the natural 

transformation 

thus 

where aEF(A), bEF(B), ai = xi(A)(a) and bi = zi(B)(b). It is easily verified that Ic/ 

is indeed a natural transformation and we claim that it extends cp. 

For suppose F is already in 9, then the natural transformation 

1~ : I-I Gi + F 
iEZ 

is an operation, hence 

by the definition of homomorphism in Section 2. The converse implication holds 

because cp is natural. Therefore (PF = &. 

On the other hand, any homomorphism of G&T clearly restricts to a homomorphism 

of Wq. q 

A result analogous to Proposition 12.2 holds for homomorphic relations, but we will 

not spell it out. 

13. Recursively enumerable relations 

Let us review some facts about ordinary binary relations p : N ,4 N whose graphs are 

recursively enumerable, call them recursively enumerable relations for short. Clearly, 

every such relation has the form p = fg”, that is to say, 

v m,nEN(npm @ 3&n = f(k) A m = g(k))) 

where f and g are (general) recursive functions in one variable. (In fact, by a result 

of Rosser’s they may be taken to be primitive recursive.) 
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The set of recursively enumerable relations N f, N is closed under composition 
of relations. For, if the graph of g”h is recursive, it is recursively enumerable, hence 
g”h = pq”, for some (general or primitive) recursive functions p,q : N + N. 

Therefore, 

cfg” )(hk”) = fpg”k” = Up)(k)” 

is again recursively enumerable. 
Note that fg” is a partial recursive function if it is single-valued, i.e., 

fs”sf” = (fs”>tfs”>” L lNi, 

which is equivalent to g”g 5 f”f. Note also that the partial recursive function fg” 
is a general recursive function if and only if it is universally defined, which is easily 
seen to be the case if and only if g is surjective in the usual sense. 

The category PER plays a role in theoretical computer science as a model of poly- 
morphic lambda-calculus. We shall now present a new construction of PER. Its objects 
are partial equivalence relations on k4 and its morphisms ppcc : IX + /? are (equiva- 
lence classes of) recursively enumerable relations p : N f, N such that a < p”pp and 
pap” 5 /I. Equality between morphisms c1 -+ fl is defined thus: bga = pea provided 
a 5 p”/Ia or, equivalently, pao” 5 /I. 

This is not the usual construction, which requires that p be a partial recursive func- 
tion, in which case the condition pclp” 5 b is deducible from CI 5 p”pp. However, it is 
equivalent to the usual construction, since bps = gpz, where p* is the partial recursive 
function defined as follows: 

p*(m) = smallest n such that npm. 

Proposition 13.1. If bpor is a morphism in PER, as dejined above, then so is 8~: and 

BP: = BPa. 

Proof. We are given that pap’ 5 p and c1 5 p”j3p and wish to show the same with p 

replaced by p*. Since p* 5 p, we immediately obtain p* up*’ 5 pap’ < j3. But why is 
a 5 p*“ap*? 

Suppose norm, hence n(p”/?p)m, i.e., 

h,em(kPn A W A @ml. 

Let k’ = p*(n) and 8 = p*(m). Then 

k’pn A nam A e’pm, 

hence k’(pap’)e’ and so K’PL’. Thus, 

k’p*n A k’/?e’ A t?p*m, 

hence n(p*“flp*)m. This shows that a 5 ~*~flp*, as required. 
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Finally, we have 

hence BP,* = bpn. tl 

There is a resemblance between our new construction of PER and the construction 
of $9: in Section 8. Can the relation between the two constructions be made precise? 

Let %? be the monoid of general recursive tinctions N + N and take 59 = VP. 
Then ‘3 and %? have only one object, namely N. In particular, % = Hom(N, N). With 
any relation p on N we associate the relation pk in G& as follows: 

Now the expression on the right implies 

i.e., 

v. c. N4wP~w). 

Thus, {pk} is what we have called a natural family of relations (with one member), 
making p+ a potential relation in @4. 

We note that 

Taking 

b(n) = smallest k such that (c(n)& A kpu(n)), 

we see that the above holds 

(op)+ = .+p+. 

Note that this argument makes use of the minimization scheme, which would not 
have worked if we had taken % to be the monoid of primitive recursive functions. 
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Thus, (-)t is a homomorphism of the monoid of binary relations on N to the 
monoid of potential relations in %?3. Moreover, it is easily seen to preserve the converse 
operation and the partial order of relations: 

p = put ) p<a*p+<.t. 

Let us investigate what it does to recursively enumerable relations. 

We observe that 

(fg”)T = ftgt”. 

Now 

bfiu @‘d,mb(n) = f (a(n)) 

*b=fa 

@ bfw, 

according to our convention of writing f for [? f]. Therefore f t = f, and so 

(fs”Y = fs”; 

in other words, if p is any recursively enumerable relation fg”, pt is the representable 
homomorphic relation also denoted by fg”. 

Conversely, let there be given a potential relation n in VS, that is, a natural family 
{no} of one member. We define the relation rc§ on N thus: 

where c, is the function N + N with constant value n E N. 
We claim that 

pts = p > .st = 71. 

Indeed, 

nptpm * c,pkc, 

H ~kE&(~)P4~) 

H npm 
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since 

c!@)(n) = b(k) = b(c!f(n)) = (&c)(n), 

and by naturality of {rc~}. 

We have thus proved: 

Proposition 13.2. There is an isomorphism between the monoid of binary relations 
on N and the monoid of potential relations on %?g, where %? is the monoid of re- 

cursive functions N -+ N and 9 = 5Pp, which preserves the converse operation and 

the partial order. Moreover, it induces an isomorphism between the monoid of recur- 
sively enumerable relations on N and the monoid of zig-zag homomorphic relations 

in VY. 

We are now in a position to compare the categories PER and @$, provided the 

‘relations’ of Section 8 are taken to be ‘potential relations’. 

Corollary 13.3. If G9 is the monoid of recursive functions N + N and $9 = ‘PP, ‘2?$ 
may be identified with PER 

This observation is not really surprising, as it influenced our choice of the objects 

and arrows for @. Otherwise we might have allowed its arrows to be induced by all 

homomorphic relations, not just zig-zag ones. We might have admitted as objects only 

homomorphic pers, but then we would not have been sure that the constructions of 

PER in computer science is a special case of that of %?$ in algebra. 

14. Commentary 

This article might have been called ‘two constructions in search of suitable defi- 

nitions’. It had been clear to me for some time that the usual constructions of the 

so-called connecting homomorphism in homological algebra should work for arbitrary 

Maltsev and Goursat categories. The problem was to find the right definitions for 

‘exactness’ ‘(quasi-) commutativity’, etc. Having produced too stringent definitions 

in earlier attempts, I finally straightened things out for algebraic categories in my 

contribution to the Magari conference of 1994 and am here considering more general 

operational categories, which include ordinary locally small categories as a special 

case. 

It turns out that there are, in fact, two constructions of the connecting homomor- 

phism, one as a straightforward zig-zag relation and the other as an application of 

the ‘two-square lemma’. These two constructions agree in Maltsev categories, but 

seem to be different in Goursat categories. Moreover, the second construction gen- 

eralizes to arbitrary operational categories, provided one is willing to make some 

concessions. 
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Here follow some comments on the separate sections of this article. 

1. It has been known for a long time that the connecting homomorphism, as in Theo- 

rem 1.1, can be constructed with the help of binary relations; see [28, 29, 

Ch. II,61 for the early history. 

A generalization as in Theorem 1.2 had been obtained for Maltsev varieties in [ 191 

and for Maltsev categories in [6]. Unfortunately, both these versions suffered from the 

choice of bad definitions for exactness and commutativity, as pointed out in [5]. For 

Goursat varieties, this was finally rectified in [22]. 

2. The ‘operational categories’ discussed here are more general than those of Wyler 

[35] and those of Lambek and Rattray [23], but less general than those of Jay [13] 

which I had proposed at the Midwest Category Seminar at Waterloo in 1968. I had 

a hard time deciding on the right definition in the present context. For most purposes 

it would have been sufficient to take 3 &VP, all sorts being representable, but this 

would have eliminated Linton’s [26] equational categories and the multi-sorted alge- 

bras of Higgins [lo]. Postulates I and II for operational categories are introduced for 

convenience only, to facilitate the statement of results. We could have avoided these 

postulates, provided we had employed a somewhat more cumbersome language, distin- 

guishing between homomorphisms, morphisms and arrows in 9. 

3. Homomorphic relations in algebraic categories had been studied in [ 161 and re- 

lations in Abelian categories in [ 111. Relations in regular categories were investigated 

e.g. in [ 1,3,8,30,3 1,341 and, in connection with Maltsev and Goursat conditions, in 

[6]. I am distinguishing between potential and homomorphic relations, not having been 

able to decide which of the two should just be called relations. 

4. Injections and surjections in operational categories resemble those in algebraic 

varieties and, in general, must be distinguished from monomorphism and epimorphisms 

respectively. 

5. The notion of exactness discussed here depends on the correct definition of 

Im(f, g) as a congruence relation and not as fg”, as had been the case in the earlier 

publications mentioned in the comments on Section 1. 

6. I had noticed in [16] that certain key results of group theory were really valid in 

Maltsev varieties. It has now become clear, as was pointed out to me by Carboni and 

Pedicchio, that they were valid in Goursat varieties. I had already learned of a crucial 

result by Goursat [9] from H.S.M. Coxeter and put Goursat’s name in the titles of two 

of my early papers. 

Natural examples of Goursat varieties that are not Maltsev are hard to come by; 

the first such example was pointed out in [33], as I learned from K. Denecke. Both 

Maltsev and Goursat varieties can be characterized in a number of equivalent ways. 

In generalizing these notions to arbitrary operational categories, I could not decide 

on the best definition, hence the subscript 1,2 or 3 on ‘Maltsev’ and ‘Goursat’. Of 

course, in categories in which all homomorphic relations are representable, such as the 

single-sorted algebraic categories of Section 11, the subscripts are not necessary. 

7. There was a problem to find the appropriate notion of commutativity for squares 

in which some arrows are doubled. As mentioned in the comments to Section 1. the 



246 J. LumbeklJournal of Pure and Applied Algebra I16 (1997) 221-248 

definition picked earlier was too restrictive. The notion of quasi-commutativity proposed 
here specializes to that in my Magari paper; it works in the present context, but may 
not be the final one. The kite lemmas were introduced in answer to a suggestion by 
Robert Seely. 

8. The category %g discussed here is only one of a number of similar categories. In 
[20, 211 two such categories were considered, both with 3 = W’P. In both the objects 
were not homomorphic pers, but potential pers. In VR the arrows were induced by 
arrows of V and in Q?cR) the arrows were induced by potential relations. VCR) is a full 
subcategory of the category of all functors W’r + Set. 

9. The two-square lemma plays a crucial role for modules in my book of 1966. I 
had generalized it to groups in [ 171, probably with too stringent a notion of exactness. 
It was generalized to Maltsev varieties in [ 191 and to Maltsev categories in [6], subject 
to the defects already mentioned in Section 1, and to Goursat varieties in [22]. In these 
categories it was assumed that 9 = V’P. 

10. At least for module categories, the present constructions reduce to the usual ones. 
To extend them to arbitrary Abelian (and even more general) categories, some more 
work has to be done, see e.g. [25]. 

11. The homomorphic relations studied here agree with those of Lambek [16] in 
algebraic varieties, the forgetful functor to sets being representable. It is not repre- 
sentable in Linton’s [26] varietal categories, nor presumably in the many-sorted alge- 
braic varieties of Higgins [lo]. These were taken up again by Birkhoff and Lipson [2] 
and probably by any number of categorists following Lawvere [24]. Full subcategories 
of varietal categories were studied in [23] under the name of ‘operational categories’. 

12. The definitions of operational categories and homomorphic relations may be much 
simplified if it is assumed that the class of sorts is closed under arbitrary products. 
This definition was not adopted at the beginning here, to mention only one reason, 
because even in algebraic categories there is usually given only a set of sorts closed 
under finite products. 

13. Evidently, the category PER of theoretical computer science [27] should be a 
special case of %Yg. In this section, we achieve this by adjusting the definition of the 
latter category, over which we have control, and by showing that the usual definition 
of PER can be recast to suit our present purpose, following a suggestion by Michael 
Makkai. I have chosen ‘relation’ to mean ‘potential relation’, but it is conceivable that, 
in the operational category %‘g considered here, all potential relations are homomorphic, 
a possibility I have not investigated. 

Postscript 
If one wishes to answer all the questions that arise from a paper, it will never get 

written, In particular, I defer the following: 
(i) to compare the present definition of homomorphic relations with the usual def- 

inition of relations in regular or exact categories; 
(ii) to consider Abelian categories other than Mod R; 
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(iii) to investigate the universal property of the embedding %?g -+ U$ and to deter- 
mine when it is an equivalence; 

(iv) to see whether Hyland’s realizability topos can be obtained by an analogous 
construction (see some suggestive similarities in [4]). 

Finally, let me confess that I still have some misgivings about the scope of the 
present article. I waver between thinking it is too general and not general enough. 
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